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A""'ct-This paper is an analysis of the conditions to be satisfied in order to avoid buckling
during the growth of a silicon ribbon that is being slowly pulled from the melt. A viscoplastic
constitutive equation with a dislocation density effect is used to model the material behavior. The
critical thic:kncsses and the corresponding deflection shapes are calculated by the finite clement
method for the cantilever boundary conditions. The value of the parameter which controls the
speed of the lateral deflection is computed by using Galerkin's method. It is demonstrated that,
due to the effect of viscoplasticity, some deflection shapes increase in magnitude with time and
other shapes damp out.

I. INTRODUCTION

One approach to lowering the cost of solar power involves producing thin sheets of high
quality silicon ribbon (very thin plate) directly from the molten state. These sheets are
subsequently processed into photovoltaic cells. In order to make the economics of silicon
favorable for photovoltaics, it is necessary to have high productivity of the ribbon material.
This implies that wide sheets must be produced under conditions which require rapid
cooling at the solid-liquid interface. These conditions produce very non-uniform thermal
fields which generate large thermal stresses. These large thermal stresses can cause buckling
of the wide thin silicon ribbon[1-4].

In silicon ribbon growing processes, buckling phenomena are the most severe limitation
to the growth of good quality wider ribbon. Both the magnitude of the thermal stresses
and the stiffness of the ribbon depend on the value of the width. Simply said, processes
which produce good ribbon that is 2em in width do not yield the same quality product
that is 10em wide. Industrial experience is that the type of buckling that develops depends
on the details of the process used to grow the ribbon. Some processes have buckles which
are of long wavelengths[4] while others have very short wavelength[2] permanent
deformations. Duncan et al.[l], Kalejs et al.[2], Gurtler[S] and Dillon and De Angelis[6]
have contributed to the elastic buckling analysis of this problem. However it is clear that
the stresses in part of the ribbon are far above the local yield stress and this raises questions
about the applicability of the elastic analysis.

Basic work on the material response functions for silicon was done by Haasen[7,8]
and Sumino and co-workers[9,10]. They found that silicon is a viscoplastic material at
constant temperature and has an exp( - Q/kT') type correlation between its responses at
different temperatures. They also found that the response depended on the dislocation
density. The efficiency of solar cells as power generators is also related to their dislocation
density[ll, 12]. It is ideal when the maximum dislocation density can be kept below lQ4
cm- 2[1,3]. This is, of course, a very different parameter domain than the 109 em -2 which
usually exists in metals. This low dislocation density forces us to simultaneously make
calculations on the dislocation density spatial distributions just as we predict the stress
distributions[13].

This analysis parallels that of Tvergaard[14], in several important details, who
considered the creep buckling of simply supported plates subjected to constant axial
stresses in one direction. Our analysis differs from that of Tvergaard in the material
constitutive relation that is used and the nature of the stresses involved. The in-plane
stresses considered herein are due to the non-uniform thermal profile and therefore all
components (i.e. tJ~y, tJ~y and tJ~y) exist, vary in space and must be retained[15, 16]. The
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ribbon is considered to be very thin and the strain is assumed linear through the thickness
and there is no coupling between the in-plane forces and bending so that the in-plane
forces do not change during buckling. A finite element method is used to calculate the
critical thicknesses and the corresponding buckling shapes, and Galerkin's method is used
to determine how the amplitudes of the lateral deflection grow in time[13].

2. ANALYSIS

Consider a plate having a small initial imperfection wo, the governing differential
equation is[15-17J

(I)

The rectangular Cartesian coordinate system (x, y) that is used is shown in Fig. 1. The in­
plane stresses from the prebuckling state are denoted (1~y, (1~)' and (1~y and h is the plate
thickness; Mx , Mxy and My are the moments in the buckling state. The total lateral
deflection of the plate is wand Pz(x,y) is the lateral load intensity that is applied to the
plate.

The material response is assumed to be isotropic and thermal viscoplastic such
that[13]

(2)

where i,j, k = 1, 2, 3, c1jj are the components of the stress rate tensor, 6jj are the components
of the strain rate tensor, t is the rate of change of temperature, trJ are components of the
plastic strain rate tensor, Nm is the mobile dislocation density, oij is the Kronecker delta
function, IX is the thermal expansion coefficient, v is Poisson's ratio, and E is Young's
modulus which is a fUDction of temperature and is given as 1.7 x 1011 - 2.771 X 104 x (T')2
Pa, where T' is the absolute temperature[18]. The plastic strain rates in eqn (2) are written
as[13,14]

z

Fig. I. The typical plate element in its initial and deformed configuration.
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if] = ISij

and the rate of dislocation density change is[13]
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(3)

(4)

where Sij are deviatoric components of the stress tensor defined by Sij = (lij - (lu~ii3. The
viscosity I in eqn (3) is[13]

(5)

if .JJ2 I'll; D.JNm' the values of I and Nm are zero, and where

D = GbIB,

t is time and T is the "applied shear stress"; G is the shear modulus; b is the magnitude of
Burger's vector which for silicon is 3.8 x 10- 10 m; Nm is the density of mobile dislocation;
B is a parameter characterizing the interaction between dislocations and is 3.3; Q is the
Peierls energy and is 2.17 eV; k is Boltzman's constant and is equal to 8.617 x 10- 5 eV K -1;

Bo is mobility and is taken as 4.3 x 104 m - 1; K, Pand r are material constants which are
taken as 3.1 x 10-4 m N- l

, 1.1 and 1.0, respectively; and To is assumed to be equal to 10'
Nm- 2• The parameter J2 = (Si~ii)/2 is the second invariant ofthe deviatoric stress tensor
and D.JNm is called the back stress. The form of eqns (4) and (5), as well as the numerical
values for the constants therein are based on the work of Haasen[7, 8] and Sumino and
co-workers[9,10] in the one-dimensional test. Silicon is also anisotropic in its elastic
response. We assume isotropy in order to evaluate the effect of the viscoplastic response
on buckling.

We now find it convenient to write the total lateral deflection was

(6)

where superscripts e and vp represent elastic and plastic behavior, respectively, and WO is
the initial lateral imperfection. The strains are also split into in-plane components plus
bending terms and written as

(7a)

where £& is the strain in the middle plane of the plate and z is the distance from the middle
plane. By making the time derivative of eqn (7a), we have

(7b)

where the dot on the top of each variable is the rate of its variable. The basic definition

(8)

relates the stresses (Iii to the moments.
When elastic strains are considered separately (i.e. plastic strain rates are zero), the
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moment tensor can be expressed in terms of the elastic lateral deflection w· alone according
to eqn (7a). They are

(9)

where

Eh 3
D = __---:-

• 12(1 - v2
)'

When the elastic strain rates are zero, the moments acting on the plates are expressed
in terms of the viscoplastic lateral deflection rate wVP alone according to eqn (7b). They
are

(10)

(11)

and

where

h3

Dvp = 12f

where the viscosity f, as defined in eqn (5), is a complex function of x and y but is "known"
in the buckling analysis[13, 19], and in particular is assumed to be independent of the
thickness position. One can interpret f being independent of z to be a Taylor series
expansion where the first term is all that is retained.

Since the definition of eqn (8) is true regardless of the material properties, under the
same applied loading circumstances, the relationship between the elastic lateral deflection
w· and the viscoplastic lateral deflection rate wVP can be written as

02wv
p (02W• 02W.)--=EVP -(2 - v) + (2v - 1)-

ox2 ox2 oy2

02wv
p (02W• 02W.)

-- = EVP -(2 - v) + (2v - 1)-
oy2 oy2 ox2

where

fE
EVP = 3(1 _ v2)'

For small plastic deformations, there is no volume change and Poisson's ratio v is assumed
as 0.5 in the elastic range as well. Hence eqn (11) becomes
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02Wvp 2fE 02W•
ox2 = -3- ox2

02wvp 2fE 02W•

oy2 = -3- oy2

02wvp 2fE 02W•
oxoy =3 oxoy"
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(12)

This is one of the key ideas in Tvergaard's analysis. We then use eqn (1), where the lateral
load intensity Pix, y) is assumed zero during the growth of the ribbon, and eqn (7) to
produce

(13)

Since we assume that the in-plane forces do not change during buckling, the time
derivative of the in-plane stresses vanishes. The initial imperfection WO is a known deflected
shape and does not change with time, so that its time derivative also vanishes. By taking
the time derivative of both sides of eqn (13), we obtain

This eliminates WO from eqn (13). By substituting eqn (12) into eqn (14), we obtain

D ~2 •• ~2 •• ~2 ••
• V4 •• ouw 20uW ouw

It W = (lu ox2 + (lXY oxoy + (lyy oy2

2f E( 02W• 02W• 02W.)
+ 3 (I~" ox2 + 2(1~y oxoy + (I~, oy2 . (15)

Equation (15) is the governing equation of buckling for a viscoplastic plate, but due
to eqn (12), it involves only the elastic deflection w· as the dependent variable. This does
not mean that the plate is being considered as an elastic one. Equation (15) is a typical
creep buckling type equation for plates whose solution can be assumed in the separable
form as

w·(x, y, t) = g(t)W(x, y) (16)

where W(x,y) is the deflected shape of the plates and g(t) is the magnitude of the deflected
shape.

2.1. Analysis with the prescribed deflection shape (simply supported plate)
If the deflected shape of the plates is approximately known before the buckling analysis

begins, the solution procedures are similar to those of Tvergaard[14] as illustrated in the
appendix for our material.

2.2. Analysis without the prescribed deflection shape
If the approximate buckling mode shape for creep buckling is not available beforehand,

the Tvergaard solution technique must be somewhat modified. By substituting eqn (16)
into eqn (15), we obtain
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(17)

21E( a
2w a

2w a2w)
g(t) -3- O'~x ox2 + 20'~y oxay + 0'~'''ay2 2
-() = D ::12 2 2 = ).
g t c V4 W 0 U W 2 0 aWoo w

h -O'xx ax2 - O'XYaxay -O'yy ay2

where A. 2 is the separation parameter. From eqn (17), two differential equations are
obtained. One is for the time-dependent amplitude problem and the other is the spatial
problem. They are

(18)

and

(19)

When the value of1 vanishes, eqn (19) becomes the governing equation of elastic plate
buckling. Hence, the viscoplastic buckling shape is governed by the same spatial equation
as the elastic buckling one but where the elastic in-plane forces have to be replaced by

(20)

Of course the plate made of inelastic material also has deflections which grow with time
according to eqn (18). The solution of eqn (18) is

(21)

(22)

(23)

where gO is the amplitude of the initial plate imperfection WO whose deflection shape is
W(x,y). The value of ).2 controls the speed of the lateral deflection of plates. When the
value of A.2 is equal to infinity, elastic buckling occurs at once. A large value of A.2 means
that the lateral deflection of plates grow rapidly. When A.2 is negative, the initial imperfection
of plates will damp out with time.

If one assumes that IE/A.2 « 1, eqn (19) reduces to

DCn4 0 a2w 2 0 a2w 0 a2w
h v w = O'xx ax2 + O'x, axay + 0'" ay2 .

Equation (22) is the case of elastic plate buckling, except that the in-plane stresses are the
viscoplastic ones and therefore this equation can be solved by standard finite element
methods[13,20-23] in order to calculate the critical thicknesses (i.e. ~(I/eigenvalue)) and
the corresponding mode shapes. In all thermal buckling problems discussed herein, the in­
plane stresses O'~ are calculated from the prebuckling state[13, 19], where the material is
considered to be viscoplastic and governed by eqns (2H5).

Let the critical thicknesses found from eqn (22) be designated as her and the
corresponding buckling mode shapes be W*(x,y), then eqn (22) becomes

D:r V4 W* _ 0 a
2
w* + 2 °a2

w* + 0 a2
w*

-h - O'JCJC--;T O'JC'~ 0''',::1 2 .
er uX uX Y uy

By substituting eqn (23) into eqn (19), we obtain

DCV4W* _ (1 + 2/~)D~r V4w* = O.
h 3A. her

(24)

Since the values of1 and E vary throughout the plane of the plate, Galerkin's method
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Fig. 2. Dimensions of the ribbon and the schematic thermal profile along the growth (x) direction.

can be used to evaluate the value of ;.2 for the entire plate deflecting as a unit[13]. By
multiplying eqn (24) by W*(x, y) and integrating the result throughout the plane of the
plate, we obtain

(25)

where

S2 = IfE(V4 W*)W*dxdy

and h is the actual plate thickness (which is larger than her)'
In fonnulating the above problem we linearize the plastic strain variation in the z­

direction; f is calculated from the stresses and dislocation densities in the z = 0 plane and
is assumed independent of z. The result is eqn (21). Had the z dependence in f been
retained, the analogue ofeqn (21) would predict infinite deflections in a finite time. However,
our interest is in avoiding large deflections and therefore the assumption of f being
independent of z is adequate and much simpler to use. In order to evaluate the intcll'als
in eqn (25), we use W*(x, y) as given by the FEM solution of eqn (23) as the approximate
deflection shape in the Galerkin procedure.

3. NUMERICAL RESULTS FOR CANTILEVER SILICON RIBBON

In Il'owing silicon ribbon, a fixed boundary is assumed in bending along the far end
(x =L) of the ribbon and the other boundaries are all traction free as shown in Fig. 2.
Therefore, a creep buckling analysis of the cantilever rectangular plates will be used as the
model of growing ribbon. A finite element program was developed for the IBM 3083
computer. A 16 degrees of freedom Hennitian-confonning rectangular clement is used.
There are four nodes in each element and four degrees of freedom (i.e. w, ow/ox, ow/oy
and 02W/oxoy) at each node[l3,20,21). Therefore, the values of w, ow/ox, ow/oy and
ow2/oxoy are zero along the fixed edge and arbitrary along the free edac[13].

A simply supported clastic plate which is subjected to an axial compression force in
one direction was used to test the accuracy of the program. When a quarter plate (because
of symmetry) is divided into four elements, the difference between the exact and finite
element values of the critical load is 0.6% when using single precision numerics in the
computer. When the elastic quarter plate is divided into 16 clements, the difference in the
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buckling load is about 0.1 %[13]. If more elements (say more than 50 elements) are used,
double precision arithmetic is required in the computer in order to reduce roundoff errors.
The plate is divided into 20 x 20 elements in this paper. This results in a large system of
linear algebraic equations where many of the low eigenvalues (critical thicknesses) and the
corresponding eigenvectors (buckling mode shapes) for eqn (22) are calculated by the
computer. Since some eigenvalues are negative, the number of eigenvalues which are
specified to be solved for in the computer calculation must be larger than the number of
negative eigenvalues in eqn (22)[13]. We frequently find it necessary to calculate 30
eigenvalues. After the critical thicknesses and the corresponding mode shapes W(x, y) are
obtained, the actual plate thickness h, which is taken to be larger than the critical thickness
her of the first positive buckling mode (the lowest positive eigenvalue), is chosen. By
substituting these values into eqn (25), the values of ,1.2 are computed. The negative
eigenvalues means that the plate will buckle when the in-plane stresses have the same
spatial distribution but have a change in sign. Since this change in sign cannot occur for
the prescribed thermal fields, there is no physical content in these values.

The in-plane stresses used here are obtained from the viscoplastic plane stress
analysis[13]. The in-plane thermal stresses q~)', q~)' and q~)' in the prebuckling state are
calculated before attempting the buckling analysis. The equilibrium equation for the in­
plane stresses in a thin plate lying in the x-y plane is used in the form[13]

(26)

and the compatibility equation becomes

where

1Ix (:12 'pl :12 'pI :12 'pI )
FP=- E (J tno+~-2~ dx

V 0 oy2 ox2 oxoy

(27)

(28)

where t~~o, ~~o and t~~o are the plastic strain rates in the prebuckling state, and V is the
pull speed of the silicon ribbon and is taken to be 3em min - 1 in this analysis. Equations
(26)-(28), plus eqn (5), and the traction-free boundary conditions of the plate are solved
iteratively to yield 11~)', q~, 11~, and Nm as functions of space (x, y). It is found that there
is a critical width for which the iteration process that is used converges. The stresses in
wide ribbons become large which creates a high dislocation density and ultimately the
plastic strain rates become too large.

Typical results for a~,(x, y) and N(x, y) are shown in Figs 3 and 4. Details of the
solutions ofeqns (26H28)and additional results are contained in recent publications[13, 19].

A quadratic and an exponential thermal profile will be used as examples of thermal
fields that can be analyzed. The creep buckling analysis and results will be discussed below
for these profiles.

3.1. The quadratic thermal profile
Consider now the case where the ribbon length is 8cm, the initial dislocation density

is 0.5 em- 1 and the pull speed is 3 em min- 1. This ribbon is subjected to the quadratic
thermal profile given by T(x) = 1412 - 110.74x + 3.5x20C, The in-plane stresses and the
values of viscosity f are obtained by solving eqns (26)-(28)[13,19]. The specific value of
XZ is calculated by assuming (arbitrarily) the actual plate thickness to be h = l.1her , where
her is the thickness of the first positive buckling mode. The critical thickness and the value
of ,ll for each corresponding buckling mode are shown in Tables 1-3 for plate widths of
8,6 and 4em. Results (critical thicknesses and ,1.2) obtained for an 8em wide ribbon are
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given in Table 1. Clearly, the second mode shape in Table 1 has the maximum value of
..l.2 (or lateral growing speed). The mode shapes for the first and second buckling modes
for a ribbon width of 8 em are shown in Figs Sand 6. Results for a 6em wide ribbon are
give in Table 2. The second mode again has the maximum value of 42• Table 3 contains
results for a 4 em wide ribbon. The buckling mode with the fastest lateral growin8 speed
for the 4 em wide ribbon is the first one. The first buckling mode for this profile (and these
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Table I. The critical thicknesses and values of
22 for several modes of an 8 x 8 em plate
subjected to a T(x) = 1412 - llO.74x + 3.5x2

(0C). The initial dislocation density is 0.5 em - 2

and the actual thickness h used to calculate
22 was 1.1 he, (0.288 mm) of the first mode. The

fastest growing mode is the second one

Mode he,(mm) ,p(s - 1)

I 0.262 0.0452
2 0.258 0.0868
3 0.203 0.000175
4 0.194 -0.00481
5 0.163 0.00364
6 0.156 0.00627
7 0.137 0.000786
8 0.131 -0.000435
9 0.118 0.00103

10 0.113 0.00163
II 0.103 0.000429
12 0.100 0.000196

Table 2. The critical thicknesses and values of
22 for several modes of an 8 x 6 em plate
subjected to a 1{x) = 1412 - 110.74x +
3.Sx2 rC). The initial dislocation density is
0.5 em - 2 and the actual thickness h used to
calculate 22 was 1.1 he, (0.217mm) of the first
mode. The fastest growing mode is the second

one

Mode

1
2
3
4
5
6
7
8
9

10
11
12

he, (mm)

0.198
0.195
0.154
0.148
0.126
0.119
0.105
0.100
0.0904
0.0873
0.0796
0.0767

0.00143
0.00238
OO212סס.0

-0.000117
0.000135
0.000210
OO319סס.0

-0.00000653
0.0000443
0.0000631
OO240סס.0

OO126סס.0

geometries) is twisting (see Fig. 5). The maximum lateral growing speed for an 8 em wide
ribbon is larger than that of a 6 em wide ribbon which is in turn larger than that of a 4 em
wide ribbon with h = 1.1 her.

3.2. The exponential thermal profile example
Consider now the case of a plate of the same ribbon length (8 cm), same initial

dislocation density (0.5 em- 2) and same pull speed (3 cm min - 1) as used in the parabolic
profile, but let the ribbon be subjected to the exponential thermal profile of the form
T(x) = 1440exp (-0.08x)°C. The values of ).,2 are again calculated by assuming h = l.lhcr­
The critical thicknesses and the values of ).,2 are contained in Tables 4-6 for ribbon widths
of 7.5,6 and 4em, respectively. Clearly, the second mode (bending) has the fastest lateral
growing speed for the 7.Scm wide ribbon. Results for a 6cm wide ribbon are contained
in Table S. The second mode (bending + curling) has the maximum lateral growing speed.
Table 6 contains l'esultsobtained for a 4 em wide ribbon. However, in this case the buckling
mode with the fastest lateral speed is the first one (twisting).
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Table 3. The critical thicknesses and values of
,ll for several modes of an 8 x 4em plate
subjected to a T(x) = 1412 - 110.74x +
3.5x2 eC). The initial dislocation density is
0.5 em - 2 and the actual thickness h used to
calculate A2 was l.Jh., (0.128 mm). Thefastest

growing mode is the fint one

1 0.117 0.000353
2 0.108 0.000221
3 0.0914 0.00000618
4 0.0881 -0.00000812
5 0.0775 OO275סס.0

6 0.0735 0.0000419
7 0.0651 0.00000934
8 0.0632 -0.o00ooo506
9 0.0572 OO115סס.0

10 0.0552 OO169סס.0

11 0.0506 oo701סס0.0

12 0.0492 oo271סס0.0
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Fig. 5. The first buckling mode shape for an 8 x 8 em plate subjected to the parabolic thermal
profile T(x) =1412 - 110.74x + 3.5x2 (0C). The criticalthickness is 0.262 mm. The initial dis1ocation

density is 0.5em- 2•

4. DISCUSSIONS

The parameter used herein to describe the creep buckling resistance of plates is the
thickness. This is a dift'erent parameter than is usually used in stability analyses of plates.
The thickness is used here because T(x) is fixedt and cannot be chanaed in mapitude and
the in"plane thermal stresses in plates change with the width. The thermal stresses are
obtained from the prebuckling state (plane stress problem), and then substituted into the
buckling equation of plates to calculate the critical thickness and the corresponding
buckling shape of plates.

It is found that in the case of thermal creep buckling of thin viscoplastic plates that
the lowest mode does not always grow fastest. In fact it can damp out. By following
Tvergaard's method[14] and using the Husen-Sumino model, the thermal creep bucktiJla
equation can be derived in terms of the elastic lateral deflection we and its rate W·. This

t In some indUitrial cues the thermal profile T(x) may depend on the ribbon thickness. We do Dot consider
this variatiOD in our calculations.
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Fig. 6. The second buckling mode shape for the same case used in Fig. 5. The critical thickness is
0.258mm.

Table 4. The critical thicknesses and values of
),2 for several modes of an 8 x 7.5cm plate
subjected to a T(x) = l440e-o.oe. ('q. The
initial dislocation density is 0.5 cm - 2 and the
actual plate thickness h used to calculate ).2

was 1.1 her (0.254 mm). The fastest growing
mode is the second.one

Mode

I
2
3
4
5
6
7
8
9

10
II
12

0.231 0.6615
0.227 0.109
0.178 - OO841סס.0

0.172 - 0.00621
0.144 0.00478
0.139 0.00777
0.121 0.00103
0.116 - 0.000398
0.104 0.00137
0.101 0.00209
0.0922 0.000556
0.0892 0.000323

equation is not limited to elastic plate buckling but rather applies to a plate simultaneously
having both elastic and viscoplastic behavior. In this analysis, the value of A,2 for silicon
ribbon is dependent on the values of the viscosity f and the critical thickness and the
corresponding buckling mode shape. The critical thickness and corresponding mode shape
are affected by the thermal profile and the in-plane dimensions of the ribbon. In this paper,
several deflection shapes and values of ;'2 are reported. The lowest mode does not
necessarily have the largest value of A,2. The actual ribbon thickness has to be larger than
the critical thickness of the lowest mode that is calculated from eqn (22), otherwise the
value of A,2 in eqn (17) becomes infinite and the plate will bave a bifurcation type of
buckling. Since the wider ribbon produces larger values of the in-plane stresses for the
same thermal profile and also has a smaller resistance to bucklin&. wider ribbon generally
has a greater critical thickness and a larger value of ..i.2. Especially, when the width of the
plate approaches the critical width mentioned above in value, a funher small increment
in width will result in a large change in the value of ;,2 and hence the speed of the lateral
deflection. Since the ribbon thickness affects the speed of the lateral deftection, if a larger
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Table 5. The critical thicknesses and values of
.t1 for several modes of an 8 x 6em plate
subjected to a T(x) ... 144Oe-o.o•• ("C). The
initial dislocation density is 0.5 em -1 and the
actual plate thickness" used to calculate ).1
was 1.1 "cr (0.216mm). The fastest growing

mode is the second one
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Mode

1
2
3
4
5
6
7
8
9

10
11
12

0.196 0.00372
0.193 0.00599
0.152 OO110סס.0

0.146 -0.000338
0.124 0.000316
0.118 0.000486
0.104 0.0000664
0.100 OO176סס.0-

0.0894 0.0000995
0.0865 0.000141
0.0789 OO507סס.0

0.0761 OO263סס.0

Table 6. The critical thicknesses and values of
.t1 for several modes of an 8 x 4em plate
subjected to a T(x) ... 1440 e-o.o.. (0C). The
initial dislocation density is 0.5 em -1 and the
actual plate thickness" used to calculate ).1
was 1.1 "or (0.131 mm). The fastest growing

mode is the first one

Mode

1
2
3
4
5
6
7
8
9

10
11
12

0.119 0.000602
0.108 0.000364
0.0905 0.00000499
0.0876 OO254סס.0-

0.0768 OO390סס.0

0.0730 0.0000697
0.0645 OO136סס.0

0.0628 - 0.00000634
0.0567 OO174סס.0

0.0549 OO273סס.0

0.0502 OO103סס.0

0.0489 oo291סס0.0

thickness is used the speed will decrease. We found from calculations that the elastic critical
thickness of ribbons is close to the viscoplastic critical thickness. For example, the critical
thickness of the elastic ribbon is 0.251 mm while it is 0.231 mm for the viscoplastic ribbon
in the case of an 8 x 7.5 em ribbon subjected to the exponential thermal profile. Therefore,
if we want to prevent all possibilities of elastic buckling and neglect the speed of the lateral
deflection of creep buckling, the elastic buckling analysis can be used. A ribbon thickness
which is larger than the calculated elastic critical thickness is suggested for use in the
growth of silicon ribbon.

We note that reports in the silicon ribbon literature show many examples of long
wavelength buckling mode shapes[4] of the type shown in Figs 5 and 6. We also note that
examples of short wavelength buckling are also reported[2]. We interpret the latter as
examples of cases where A.2 < 0 for the lower modes but not for some of the higher ones.
They occur in a more complex thermal profile than is used here.

5. CONCLUSIONS

(1) A governing equation of thermal viscoplastic buckling of plates based on the
Haasen-Sumino material model was derived.

(2) The governing equation is separated into two differential equations. One equation
is related to the lateral deflection shape of plates, and the other is related to the growing

SA,5 23: 3-&
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(AI)

speed of the lateral deflection of plates.
(3) The critical thicknesses and the corresponding lateral deflection shapes were

calculated from the solutions of the governing equations. The lateral deflection speeds of
thermal creep buckling were also computed. A positive speed indicates that the lateral
deflection of the ribbon grows in time while a negative speed signifies that the lateral
deflection of the ribbon decreases in value with time.
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APPENDIX

Consider a simply supported rectangular plate with length a and width b. For a simply supported plate, the
deftcctions and the moments along the boundaries are zero, and the dcftcction shape can be assumed as

) . (i7tX) . (j7ty)W(x,y = Sin II Sin T

where i and j are positive integers.
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The valucs of the viscosity f arc calculated from the prebuckling state. The initial imperfection W
O is also

asaumed to have the same shape as W(x, y) of eqn (An That is

where gO is the masnitude of the initial imperfection. The solution of eqn (IS) can now be written as

we =g(I)Sine:X)sin~~)

By substitution of eqn (A3) into eqn (IS), it becomes

D• .rJ )[(in) ,in)(i7f) (in)]. (i7fX) . (iny)-6\1 - + - - + - sm - sm - =II a ab b a b

[
2fEg() g( )][ 0 (in) . (inx) . (iny)--t+l (J -sm-sm-

3 "'. a a b

-2tJ~,(~)~i)cos(i:X)cos~~) + O':'~i) sine:X)sin~~)J

(Al)

(A3)

(A4)

II the valucs of E. O'~. O'~ and dislocation density in the plate are asaumecl to be constant and O'~ to vanish, tbe
values off arc also CODStant and the term involving O'~ in eqn (A4) vanishes. ThercCore, sin functions in both
sides ofeqn (A4) can be cancelled. Then, by rearranging the coefficients ofg(t) and g(t), and finally dividing both
sides by the coefficient of g(l), we have

g(l) - Bg(t) = O.

The value of B is determined by the value off, E. (J~, and 0':,. That is

B=Bl
B2

where

and the solution of eqn (AS) becomes

g(t) = gO(e" - 1).

(AS)

(A6)

(A7)

From eqns (A6) and (A7). the value of the plate thickness h and the in-plane forces control the speed of creep
buckling. If the in-plane stresses (1~ and O'~, of eqn (A6) arc tensile, the value of B is neptive and the initial
imperfection wO of the plate will eventually damp out with time. On the other band, if the in-plane forces are
compressive, the lateral dcftec:tion of the plate grows with time. By substitutina the pracribecl dclIeetion shape
and the constant in-plane stresses (1~ and (J~, into the elastic buckling equation, the foUowing equation is obtained:

(AS)

where

Dcr = Ell:,
• 12(1 - v2

)'

From eqn (AS), the critical thickness he' for the in-plane stresses (J~, and 0':, is

(A9)

By substituting eqn (A9) into eqn (A6), we obtain
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(AlO)

where h > h<t was implied during the derivation of eqn (A 10). Therefore, when a plate is subjected to in-plane
compressive forces, the value of 8 is positive and the lateral deflection of the plate will grow wit~ time according
to eqn (A7). If h is equal to he" the value of 8 becomes infinite and this means that bifurcation buckling occurs
at "zero" time. This also reveals that a larger value of h will cause the lateral deflection of the plates to grow
more slowly. From the above behavior of creep buckling of plates for a simple case, the behavior for more
complex problems can be better understood.

If the values of f, E, O'~z, O'~, and O'~, are not constant and vary in space, Galerkin's method can be applied
to eqn (A4) to calculate the value of 8. That is, let

where

and

838= 84 + 85

83 rf '2fE[ 0 (in)2 . (inx) . (iny)= -0' - sm-sm-
003 u a a b

2 0 (in)(in) (inx) (iny)-0' - -cos-cos-
z'a b a b

+ O'~,~iJ sinC:X)sin~;)}nC:x)sin~;)dXdY

84 =[(~J +2(~J~iJ +~iJ}2
x rf E 2 sin2(inx)sin2(i~Y)dXdY

o 0 12(1 - v ) a

85 = rf[O'~.(~J sinC:x)sin~;)

2 0 (in)(in) (inx) (iny)-0' - -cos-cos-., a b a b

(All)


